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The parametric limit process for Laplace’s tidal equations (LTE) is considered, 
starting from the full equations of motion for a rotating, gravitationally stratified, 
compressible fluid. The boundary-value problem for free oscillations of angular 
frequency u is not well posed if cr2 < N 2  + 4w2, where N is the Vaisala frequency 
and w is the rotational speed of the Earth, and the governing partial differential 
equation is elliptic/hyperbolic on the polar/equatorial sides of the inertial latitudes 
given by 1 u = f (vertical component of 2 0 )  if c < 2w < N .  The solution of  this 
ill-posed problem is considered for a global ocean of uniform depth, with the 
effects of ellipticity, the ‘traditional ’ approximation and stratification measured 
by the small parameters PZL = wZa/g, 6 = h/a and s = hN2/g (g = acceleration due 
to gravity, h = depth of ocean, a = radius of Earth). LTE represent the joint 
limit M,  6, s 4 0 and yield bounded solutions for all latitudes. It is argued that the 
parametric expansion in .ZIZ is regular. The joint expansion in 6 and s with LTE as 
the basic approximation is singular at  the inertial latitudes if u < 2w, which 
difficulty is traced to the failure of LTE to provide an adequate description of the 
characteristics in the hyperbolic domain. It is shown that an alternative formula- 
tion, in which the buoyancy force is retained in the basic equations in the 
joint limit s J. 0, 64 0 with N $=. 2w, yields solutions that are uniformly valid 
in the neighbourhoods of the inertial latitudes. The resulting representation 
comprises a barotropic mode, which satisfies LTE, and an infinite discrete set of 
baroclinic modes, each of which has Airy turning points a t  the inertial latitudes 
and is trapped between them. The barotropic and baroclinic modes are coupled 
by the Coriolis acceleration associated with the horizontal component of the 
Earth’s rotation. The relative effects of this coupling are uniformly O(6) if u > 213, 
but it induces currents O(S/s*) and vertical displacements O(S/d) between the 
inertial latitudes if u < 2w N .  It appears that resonant amplification of the 
baroclinic modes forced by the barotropic modes could imply internal displace- 
ments that dominate those of the basic motion. 

1. Introduction 
Laplace’s tidal equations (Lamb 1932, § 215; Eckart 1960, chap. 7), herein- 

after LTE, have formed the basis of the dynamical theory of the tides for almost 
two centuries; nevertheless, despite many controversies [see Hendershott & Munk 
( 1970) for a recent review], the parametric limit process implicit in their derivation 
does not appear to have been critically examined. A definitive investigation of 
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243 J. IV. J i l e s  

this process is inhibited by the difficulty of solving even LTE without further 
approximations, and Laplace’s global ocean of uniform depth (Longuet-Higgins 
1968) and the corresponding hemispherical ocean (Longuet-Higgins & Pond 1970) 
are the only configurations for which essentially complete solutions are available. 
It is reasonable to assume, however, that continental boundaries and submarine 
topography do not alter the qualitative character of the basic perturbation pro- 
cess, and the following investigation therefore adopts the model of a global ocean. 

Appropriate scaling parameters for the description of such an ocean, together 
with the approximate numerical values obtained by distributing the real oceans 
uniformly over the Earth, are 

6 = h/a = 6 x 

e = NZ = w2a,/g + 3 x 10-3, 

r = gh/c2 + 2 x 10-2 

s = - (hp’/p) - I? = hN2/g += 2 x lop3, 

(1.1) 

(1.2) 

(1.3) 

(1.4) and 

where h = 4 x lO3m is the depth; a = 6.4 x 106m is the radius of the Earth; 8 is 
the ellipticity of the Earth (1 - E is the ratio of the polar radius to the equatorial 
radius); HZ is the kinematic ellipticity; w + 7.3 x radls is the angular velocity 
of the Earth; g = 10m/s2; I? and s are measures of compressibility and strati- 
fication; c + 1 - 4 x 103 m/s is the velocity of sound; p and p’ are the density and its 
vertical gradient; N + 2 x l0-3rad/s is a representative buoyancy (Vaisala) 
frequency ( N  varies by a t  least an order of magnitude between surface and 
bottom). Derived similarity parameters are 

p = 4w2a2/gh = 4 2 ~ / 6  = 30, (1.5) 

,,,I ~ = N/2w G (~ /4uud)h  + 10 (1.6) 

and h = (r/2w < I, (1.7) 

where (r is the angular frequency. 

are typically invoked in a derivation from the basic equations of motion) are 
The basic approximations and idealizations for LTE (in the order in which they 

(i) a perfect homogeneous fluid (r = s = 0), 
(ii) small disturbances relative to a state of uniform rotation, 
(iii) a spherical Earth ( E  = $22 = O ) ,  
(iv) a uniform gravitational field, 
(v) a rigid ocean bottom, 
(vi) a shallow ocean (8 < I ) ,  in which both the Coriolis acceleration associated 

with the horizontal component of the Earth’s rotation and the vertical com- 
ponent of the particle acceleration are neglected. 

I n  addition, it is usually assumed that the motion is simple harmonic; however, 
this assumption is (in principle) no more restrictive than (ii) by virtue of Fourier’s 
theorem. 

(i) The assumption of a perfect fluid is amply justified in the present context 
and is not considered further (turbulent, in contrast to  molecular, diffusion may 
be important in the description of resonant oscillations but must be treated 
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empirically). The assumption of a homogeneous fluid (I?, s J. 0) implies barotropic 
motion and rules out the internal waves (baroclinic motion) that are observed in 
the real oceans. The vertical displacement scale for the latter is much greater than 
that for the barotropic motion, and it therefore may be necessary to allow for the 
buoyancy force implied by stratification even though s << 1. Compressibility, on 
the other hand, is relatively unimportant (which is to say that sound waves are 
unimportant compared with gravity waves) and may be neglected except as it 
enters s (Boussinesq approximation) ; however, s < I? for approximately adiabatic 
stratification, as in the oceans outside the thermocline, and a rational perturba- 
tion analysis therefore must consider the limit I’ 4 0. [We note that I’ = 1 for the 
atmosphere and that this, together with the absence of a free surface, prevents 
a sharp distinction between barotropic and baroclinic motion (cf. Chapman & 
Lindzen 1970, chap. 3).] 

(ii) The assumption of small disturbances, which permits linearization of the 
equations of motion, appears to be amply justified for tidal motion except in very 
shallow water and requires no further discussion in the present context. 

(iii) A rational appraisal of the limit BZ J. 0 must recognize that m is significantly 
larger than 6. However, the effects of ellipticity are essentially geometrical, and 
neglecting them implies an error that is uniformly O(PA). These effects could be 
included by referring the limit SJ. 0 to spheroidal, rather than spherical, level 
surfaces, but this would complicate the mathematical analysis without contri- 
buting significantly to the endresults, for which a uniform error O(BZ)  is negligible. 
[Solberg (1936a) ,  who, according to Proudman (1943), “considered it an ‘internal 
contradiction ’ to retain the dynamical effect of the Earth’s rotation on the tides 
and yet to neglect it on the shape of the mean surface of the ocean“, awes a 
lengthy treatment of tidal oscillations on a spheroidal Earth. As Proudman 
remarks, the ‘ contradiction’ is resolved by regarding wz and h as independent 
parameters. It also should be remarked that current satellite data on the figure of 
the Earth imply that significant departures from a spheroid occur a t  O(k2),  so that 
there is no geophysical justification in going beyond terms O(e) . ]  

(iv, v) The assumption of a uniform gravitational field implies the neglect of 
both the radial variation of gravity (the neglect of the tangential variation of 
gravity is implicit in the limit M? 4 0) and self-attraction (mutual gravitational 
attraction associated with free-surface displacement). The radial variation of 
gravity is O(6)  and therefore should be included in a completely consistent 
investigation of the limit 6 J. 0; however, the effects of this variation are found (by 
analysis) to be uniformly O(6) and quantitatively less (or a t  least no more) 
significant than those of ellipticity. Self-attraction is quantitatively significant 
for the tides and may be formally incorporated in LTE either through the intro- 
duction of a linear operator (cf. Platzman 1971) or through the expansion of the 
solution in spherical harmonics (Lamb 1933, tj 300). A similar statement holds for 
the effects of bottom elasticity. However, including either self-attraction or 
bottom elasticity in the following perturbation analysis would introduce addi- 
tional complications in an already complicated analysis, and we therefore fall back 
on the intuitive argument that neither is qualitatively significant in the present 
context. 
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(vi) The assumptions grouped in (vi) above are designated collectively as the 
hydrostatic or:traditional (Eckart 1960, p. 95 f f )  approximation. This approxima- 
tion, which corresponds to the limit S $ 0  with p and h fixed, has long been contro- 
versial (seeBjerknes et aE. 1933, chap. 13; Solberg 1936a; Proudman 1942; Phillips 
1966,1968; Veronis 1968), but the crucial fact that the limit S$ 0 may be singular 
for A < 1 appears to have been overlooked prior to Stewartson & Rickard’s (1969) 
study of free oscillations of a rotating, homogeneous, inviscid fluid between con- 
centric spheres (corresponding to the present problem for p = A- = 0).  

Stewartson & Rickard posed a perturbation expansion in powers of S and 
discovered that terms O(Sn),  n 3 1, in this expansion are singular at  those two 
latitudes (hereinafter inertial latitudes) at which 

f = 2wp = kcr, (1.8) 

or, equivalently, p = ? A, where p is the sine of the latitude. They then attempted 
to construct an inner expansion in the stretched co-ordinate S-&(,u - A )  but were 
unable to match their inner and outer expansions and concluded that the pertur- 
bation solution was ‘pathological’. Stewartson & Walton (1974, private com- 
munication) subsequently resolved the matching problem through the intro- 
duction of a new set of modes for which h provides the lateral, as well as the 
vertical, scale ; however, the resulting perturbation expansion remains singular 
(in the sense that the scale of the solution in the neighbourhoods of the inertial 
latitudes differs intrinsically from that of the basic solution). 

Stewartson & Rickard associated the fact that the limit SAO is singular for 
h < 1 with the fact that the partial differential equation that governs small 
harmonic disturbances in a rotating, non-diffusive, homogeneous fluid is hyper- 
bolic for g < 2w, whereas the boundary conditions are prescribed over closed 
surfaces, which implies that the problem is not well posed. This difficulty, which 
appears to have been recognized originally by Hadamard (1936) and Solberg 
(1936b) (see also Weinstein 1942; Bateman 1943; Gortler 1943, 1957), is com- 
pounded by stratification, for which the corresponding partial differential 
equation is elliptic/hyperbolic for 

c r2 -  (4w2+N2) + (N/cr)2f2Z 0, (1.9) 

where f is defined by (1.8). It follows that the boundary-value problem for tidal 
oscillations is well posed if and only if 

> (4w2+N2)9 3 cr*, (1.10) 

which, for typical N ,  excludes all frequencies that are tidal in the conventional 
sense of the term. The equation is hyperbolic for all latitudes if 

either 2w < cr < Nmin or N,,, < cr < 201, (1.11 a, b )  

where Nminlmax is the minimum/maximum value of N .  The equation is mixed if 

either 0 < cr < min(2w,N) or max(2w,N) < g < r*. (1.12a, b ) 

The regime (I. 12 b) ,  which represents a rotation-induced broadening of the 
internal-wave cut-off (which is given by cr = N if o = 0), is of limited interest in 
the present context. The regimes described by (1.9)-( 1.12) are depicted in figure 1.  
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FIGURE 1. The regimes delineated by (1.9)-( 1.12). The drawing is scaled for N 2  = 802 in the 
interest of clarity, whereas N 2  = 800w2 would be more realistic for the oceans. The tidal 
regime is u2 < 4w2, in which the governing partial differential equation is mixed. 

The preceding discussion implies that the critical limits for LTE are I? J. 0 and 
S J. 0. The perturbation problem associated with these limits is attacked below 
according to the following plan. The equations of motion and the boundary 
conditions for a non-diffusive global ocean of uniform depth are derived in Q 2 on 
the basis of (ii)-(v) above and, in addition, the neglect of the radial variation of 
the metrical coefficients. A more complete analysis reveals that the effects of this 
last approximation are uniformly O(S) and therefore no more significant than 
those of ellipticity and the radial variation of gravity in the present context. 
[Phillips (1966, 1968) argues from angular momentum considerations that the 
radial variation of the metrical coefficients and the horizontal component of the 
Earth’s rotation are of strict1 y comparable significance €or a homogeneous ocean 
but appears to agree with Veronis (1968) that the argument may not be physically 
conclusive. He also recognizes that it is not applicable to a stratified fluid if 
AP2 3 1 .] The eigenvalue problem implied by Q 2 for finite S, I? and s is examined 
in $ 3  with p as the eigenparameter (for given A). It is demonstrated that the 
eigenvalues must be real, but not necessarily positive, and that the eigenfunctions 
are orthogonal. LTE are derived in fj 4 by letting I?, S J. 0 with p and h fixed and 
s = O( 1 ), and the properties of the resulting normal modes are recapitulated. 

A joint perturbation expansion in r and 6 with s = O( 1) is found to be singular 
at ,u = ? A  and does not appear to admit a matched inner expansion that is 
physically acceptable.? This fundamental difficulty appears to follow from the 

t I have carried out a detailed analysis for the special case of constant N .  The outer 
approximation for the pressure and velocity is similar to that in 8 6 below, but the corre- 
sponding result for the vertical displacement is significantly different. The inner approxima- 
tion leads to Tricomi’s (1923) equation. 
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failure of LTE to provide an adequate approximation to the characteristics of the 
primitive equations in the hyperbolic domain if h < I .  A consideration of these 
characteristics suggests that a uniformly valid approximation for Jlr 9 1 can be 
obtained by retaining buoyancy in the basic approximation. This leads (in S 5) to 
a formulation that closely resembles that for atmospheric tides (Chapman & 
Lindzen 1970, chap. 3) and permits solution by separation of variables. The 
vertical-structure modes, which form a complete set, are characterized by the 
eigenvalues a,, = O( 1)  and aj = O( 11s) forj  = I ,  2, . . ., m. The corresponding level- 
surface modes satisfy LTE with p replaced by a j p  and may be expanded in the 
normal modes of LTE. That component of the solution corresponding to a. repre- 
sents the depth-averaged, or barotropic, motion, which has lateral and radial 
scales of a and h, respectively, and is correctly described by LTE. That com- 
ponent corresponding to aj, j 2 1, represents internal-wave, or baroclinic, motion 
which has lateral and radial scales of ski and h, respectively, and has been studied 
previously by Hughes (1964) and Munk & Phillips (1968) and, in the context of 
equatorial trapping, by Blandford (1966), Matsuno (1966) and Munk & Moore 
(1968). The barotropic and baroclinic motions are uncoupled in the limit 6 J. 0, but 
a perturbation expansion (in $ 6) reveals that the Coriolis acceleration associated 
with the horizontal component of the Earth's rotation induces a qualitatively 
significant coupling if and only if h < 1. The vertical acceleration also introduces 
such a coupling, but it is negligible compared with the Coriolis coupling. 

1 for the baroclinic motion invites an asymptotic 
approximation, which is developed in $ 7 .  The resulting solutions have Airy 
turning points at  ,u = f h and are trapped in l,ul < A. The spectrum is discrete 
but dense, and it appears that resonant amplification of the baroclinic modes that 
are forced (through Coriolis coupling) by the barotropic modes could imply 
internal displacements that dominate those of the basic motion. 

The reader who is interested primarily in the essential results, and not in the 
details of the limit process, could omit $5 5-7 and pass directly from § 4 to $ 8, 
where the equations necessary for a uniformly valid formulation of the tidal 
equations are recapitulated. 

The inequality ajp 

2. Equations of motion 

tion of a perfect fluid implies the equations of motion 
We consider free oscillations in a global ocean of uniform depth. The assump- 

DqlDt -F 20 x = -p-'Vp - V$, ( 2 . l a )  

and 

v.q = -p- lDp/Dt 

DplDt = c2Dp/Dt, 

( 2 . l b )  

(2.1G) 

where q is the particle velocity in the rotating reference frame; o is the angular 
velocity of the Earth; p )  p and c are pressure, density and sonic velocity; @ is the 
geopotential. The assumptions of a spherical Earth and a uniform gravitational 
field imply 

@ = g(r-a) .  (2.2) 
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The equilibrium state (subscript zero) may be described by the density po(r)  
and the hydrostatic equation 

P a r )  = - g P o W  (2.3) 

?Ve consider small oscillations about this equilibrium state of the form 

(p-PotP-po, C }  = RqpOghP,  poR,hZ}ei(ut+"+)l (2 .4a )  

and q = {u,u,w} = A(gh/2oa)&?[(-iU, V,iW}ei(ut+m+)], (2.4 b )  

where /ih is the vertical scale of the oscillation; u, u and w are the velocity com- 
ponents in the directions of increasing 8 (south), $ (east) and r (vertical), 
respectively; c is the angular frequency and m is the azimuthal wavenumber; 
93 implies the real part of;  P ,  R, U ,  V ,  W and Z are dimensionless functions of ,u and 
either 7 or x (we ultimately use x)t; 

p = cos8, ,u* = sin8, z = ( r - u ) / h =  ( f - l ) /S.  (2 .5u ,b ,c )  

Substituting (2.2)-(2.5) into (2.1),  neglecting the radial variation of the metrical 
coefficients and linearizing in R ,  we obtain (cf. Eckart 1960, § 38)  

0 [-; -: P ,  ] [i] = [ 2 $ * ] P *  (2.6a) 

(2.6b) 

R = rp+sz, w = ,mz, (2.6c, d )  

(2.7a, b )  

p = 4w2a2/gh, S = h/a, h = a /2w,  bv- = N / 2 w ,  (2.8 a - d )  

co is the equilibrium value of c (corresponding to po and po), and the subscripts ,u 
and 7 imply partial differentiation. The boundary conditions a t  the free surface 
( p  = po a t  r = a+ f;) and rigid bottom (f; = 0 a t  r = a -  h )  imply 

0 ,u* A-A-1bv-2 

(,u* U),+(ml,u*) v+w, = P r W - P ) ,  

where = gh/c& X = s/S = - (logp,),- (gale:) = N2a/g = p S N 2 ,  

P - Z = O  ( p = l o r z = O ) ,  Z=O ( f = 1 - 6  or x = - 1 ) .  (2 .9a)b)  

We also require P and 2 to be finite a t  ,u = 

differential equation for P that is elliptic/hyperbolic for D 2 0, where [cf. ( i . 9 ) ]  

1. 

Eliminating U ,  V ,  Wand Z from (2.6) yields a second-order, self-adjoint partial 

D = Ph2, +bv-2(h2-p2), h2, = 1 -h2. (2.1 Oa, b )  

3. Eigenvalue problem 
We now consider the eigenvalue problem posed by (2.6) and (2.9) for given h 

and m with ~3 as the eigenparameter. It follows from (2.6) and (2.9) that each of 
P,  U ,  V ,  W and Z must be either even or odd in ,u and that V ,  W and Z have the 
same symmetry as P, whilst U has the opposite symmetry. It suffices, in the 

t Choosing logl'/log ( 1  -a), rather than (7 - l)/S, as the stretched vertical co-ordinate 
would offer some advantages, but they are unimportant in the present context. 
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present context, to consider only positive A ;  the solution for negative A and given 
m may be obtained from the solution for IAl and - m by changing the signs of U 
and W (but not 2). 

Let {P, U ,  V ,  W , Z ;  p} be a solution of (2.6) and (2.9) and let 

{P*, u*, V*, W*, z*; p*} 
be a corresponding solution of, say, (2.6)" and (2.9)" for the same values of m and 
A. Multiplying (2.6a)* and (2.6b) through byp,{U, V ,  W }  and pop*,  respectively, 
adding the results, integrating over - 1 < p < I and 1 - 6 < f < 1, and invoking 
(2.9a, b )  to simplify the +-integral of a+(p0P*W) yields (after some reduction and 
the invocation of (2.6d) and (2.7)) 

- p( U ?'* + U" V )  +p+ ( V W* + V* W ) }  d , ~ .  (3.1) 

Interchanging Z and Z*, etc. in (3.1) and taking the difference of the two results 
on the hypothesis that p + p* yields 

from which it follows that Z and Z* are orthogonal in the indicated sense. We 
remark that regarding A, rather than p, as the eigenvalue yields a more compli- 
cated orthogonality. 

Now suppose that {P*, . . . ; p*} is the complex conjugate of {P, . . . ; p}. Each 
of the integrals in (3.1) then is real, from which it follows that p also must be real 
for any non-trivial eigensolution; however, p is not necessarily positive. (It also 
follows from the the preceding argument that A, qua eigenvalue for given p, must 
be real.) The eigensolution itself may be complex, but only within a complex 
constant that is common to each of P,  U ,  V ,  W and 2. 

4. Laplace's approximation 

J.lr fixed and s = O(6) yields 

This, together with (2.9a, b), suggests a solution of the form 

Substituting + = 1 + 6z into the third row of (2.6a) and letting 6 J. 0 with /? and 

P, = 0. (4.1) 

P = H ( p ) ,  z = (1 + z ) H ( p ) .  (4.2a, b )  

Substituting W from (2.6d) and P and Z from (4.2a, b) into the first two rows of 
( 2 . 6 ~ ~ )  and (2.6b))letting I?,& J O  withpfixed, and combiningthe results, we obtain 

(4.3) [ :p ip i:;:] [i] = L{U, V ,  H ;  p} = 0. 
app* m h *  PA 
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Eliminating U and V from (4.3) yields 

(4.4) 

and ( -Y+P)H = 0, (4.5) 

We note that (4.4) is indeterminate at p = 2 h, where 

(P* 2 a  ,u T m ) H = O  ( p =  * A ) .  (4.7) 
The differential equation (4.5), often designated as Laplace’s tidal equation, 

was integrated originally by Laplace and then by Hough (Lamb 1932, $8221, 
222); it  has recently been studied by Flattery (1967) and Longuet-Higgins (1968). 
It has apparent singularities at p = * A, regular singularities at  p = f 1, and an 
irregular singularity a t  p = co. It admits a complete set of eigensolutions (usually 
designated as Hough functions) for given m and h with /3 as the eigenvalue, and is 
exceptional, vis-d-vis the typical Sturm-Liouville equation, in the existence of 
negative eigenvalues if and only if h < 1. The eigensolutions are regular in 
lpl < l,O(p$) a sp  -+ & 1, mutually orthogonal in ( - 1,l) and may be assumed to 
be real. We denote the complete set of eigensolutions by {H,, U,, V,; P,, A, m} or, 
more briefly, {H,; p,}, and choose the normalization 

H i d p  = 1. (4.8) S’, 
Sturm’s comparison theorems do not hold for the H, if h < 1. The case h = 1 is 
special (Eckart 1960, 8 99). 

5. Separation of variables 
Laplace’s approximation provides a complete set of expansion functions, 

{H,; P,}, for the level surfaces but not for the vertical structure. It also implies the 
trivial approximation dp/dz = 0 for the characteristics of (2.6) in the hyperbolic 
domain. Inspection reveals that if JP 9 A2 the only modification of (4.1) that is 
required to obtain both a complete set of vertical-structure functions and a 
significant approximation to the characteristics is to  retain the buoyancy term 
- (Jlr2/h) W in the third row of ( 2 . 6 ~ ) ;  however, we also retain the stratification 
term SP in ( 2 . 6 ~ )  and the compressibility term r ( Z - P )  in (2.63) in order to 
demonstrate that their effects are uniformly small in the limit r, SJ. 0.t  Invoking 
(2.5c), ( 2 . 6 4  and (2.73) for 2, W and s then yields 

( 5 . 1 ~ )  

t Neglecting SP and r(2-P) is equivalent to the Boussinesq approximation. Equations 
(5. l), which retain these terms, resemble the corresponding equations for atmospheric tides 
(Chapman & Lindzen 1970, chap. 3); however, the boundary conditions (5.2) differ signifi- 
cantly from those for atmospheric tides. 
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which differ from ( 2 . 6 ~ )  b)  only in the omission of the Coriolis-acceleration terms 
p+ V andp* Wand the vertical-acceleration term h W (these terms will be included 
in 9 6). Substituting (5.1 6) into (2.9) yields the boundary conditions 

p, = 0 ( z  = O ) ,  P,-SP = 0 ( 2  = -1). ( 5 . 2 ~ )  b )  

Eliminating U ,  V and 2 from (5.1) yields 

where 9 is defined by (4.6). 

solutions of the form 

L?p = W P O )  ( ( P o l 4  p,3;, 15.3) 

The eigenvalue problem posed by (5 . la ) ,  ( 5 . 2 )  and (5.3) admits separable 

(5.4u., b )  

where {Hn(p);  /I,} are the eigenfunctions of § 4, and {F,(z); aj) are the orthonormal 
eigenfunctions determined by the Sturm-Liouville problem 

(P,  u, v} = F,(z)  {Hn(p)> V,(P), K(P)}, P = Pnlaj' 

(p^F'/s)'+ap^F = 0, ( 5 . 5 )  

F' = 0 ( Z  = O), F'-sF = 0 ( Z  = - I),  (5.6a, b) 

(p̂ W = 1, p ^ ( Z )  = Po/<Po), ( 5 . 7 ~ )  b) 

in which the primes imply differentiation with respect to z and ( ) implies 
integration over ( -  1,O). Letting j, 0 with s = O ( r ) ,  we obtain 

aj = O(l/S), (4) = O(S) ( j  2 11, ( 5 . 9 ~ )  b )  

where, by definition, 0 < a, < al.. . . 
The solution given by (5.4) for j = 0 is essentially the depth-averaged motion 

and represents a surface wave; it may be described as barotropic and is equivalent 
to the solution of $4 within O( r ) .  The higher modes ( j  2 1) represent internal 
waves and may be described as baroclinic. They are determined within factors of 

(s-lF')' + aF = 0, ( 5 . 1 0 ~ )  

F' = 0 (Z  = 0, - I) ,  ( F 2 )  = 1 (5.106, c) 

in place of (5 .5) - (5 .7) .  Moreover, F,. may be neglected compared with Fi/s to this 
same approximation, and (5.1 b) and ( 5 . 4 ~ ~ )  then imply 

2 = a j G j ( ~ ) H n ( p ) ,  Gj = - (ajs)-'F; (j 2 I ) ,  (5.1 1 a,, b )  

1 + O ( r )  by 

where the Gj  form a complete orthonormal set and satisfy 

G"+asG = 0, ( 5 . 1 2 ~ )  

G = 0 ( Z  = 0, - I), (sG') = I/a. (5.12b)c) 

Characteristics 

The characteristics of (2.6) in the hyperbolic domain are determined by 

(5.13) 



On Laplace's tidal equations 

1 

0 x 

25 1 

0 1 

P P  h 

FIGURE 2 .  ( a )  ~ ( p , h ) ,  as given by (5.16a),  and ( b )  xo(h),  as given by ( 5 . 1 6 b ) .  

The characteristics of either (5.1) or (5.3), for which the hyperbolic domain is 
,u2 < A2,  are determined by 

dp/dz = 8Mj4 f ( j ~ / / 3 ) 4 ,  (5.14) 

wherefi is given by (4.6b). Integrating (5.14) yields the characteristic co-ordinates 

Y& = X(P,  A )  T 8 J l r ( 2 )  dz, (5.15) s: 
where 

X ( P ' 4  = Xo(h)-E(sin-1(,u/h),h)+h2,P(sin-1(,u/h),h), ( 5 . 1 6 ~ )  

xo(h) z ~ ( 0 ,  A )  = E(Qm, A )  - A~,F($T ,  A ) ,  (5.16b) 

and E and F are elliptic integrals of the second and first kind; x and xo are plotted 
in figures 2 (a )  and ( b ) .  

W K B  approximations 

Itfollowsfrom ( 5 . 4 b )  and ( 5 . 9 ~ )  thatp, & 1 i f j  1 andP = O(1). Theasymptotic 
solution of (4.3) as Pn +co is considered in S 7 and yields the WKB approxima- 
tions [uniformly valid approximations are given by (7.16)] 

H, - X & k $  cos (pix + $71) (P,X + co), (5.1 7a) 

(P*/A) un N (P*/IIC) K N (Pn/xo)'b'sin ( P ~ X  + in )  (5.17 b )  

and P, - {(n- i)+%J2 (n B (5 .17~)  

wherenisthenumber ofzerosofH,in(-A,A),andxandxoaregivenby(5.16); the 
solutions have no zeros, and decay exponentially, in l,ul > A. The corresponding 
(Liouville) solution of (5. lo), 
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is quantitatively valid only forj  
for a l l j  2 1. Substituting (5.17~) and (5.18b) into (5 .4b )  yields 

1 but is likely to be at  least qualitatively valid 

S(J9/xo(h) = Zjl(n-4) (n B j  % 1) (5.19) 

for internal-wave resonance; the approximation is likely to provide useful 
estimates for all j (n B j  is automatically satisfied for S(M) < 1). Combining 
(5.17u, b) and (5.18~)  in ( 5 . 4 ~ )  yieldsresults that maybeexpressedin terms ofthe 
characteristic co-ordinates (5.15). 

6. Perturbation solution 

functions for a perturbation solution of the form 
We now regard the acceleration terms p* W and p* V + h WJr in (2.6) as forcing 

{R u, Y }  = -s ~ ( 2 ) { 9 j ( p ) , @ j ( p ) , ~ ~ ( p ) } ,  ( 6 . 1 ~ )  

where the summation is over the complete set of the orthogonal eigenfunctions 
determined by (5.5)-(5.7), and 

7 

(9, @, V }  = ( p q p ,  u, V } )  (6.lb) 

is the corresponding finite transform of {P, U ,  V}.  The amplitude of the 
vertical displacement is determined by the third row of (2.6u), which may be 
rewritten in the form [cf. (5 .1b)I  

2 = P - s-’P, + (S/s) (p* v+ h W ) .  (6.2) 

Transforming the first two rows of (2.6a), (6.2) and (2.6b) by multiplying 
through by PF, p(F’ - sF) and PF, respectively, integrating over ( - 1, 0) 
and simplifying the results through integration by par&, (2.7), (2.9) and (5 .5) -  
(5.7), we obtain (see appendix for details) 

L{%, K 9; @) = @hQ, (6.3) 

where Q = (0, -p* (pFZ),  (p(s-’F’-F) (p* V +  W))} (6.4) 

and L is defined by (4.3). 
Equation (6.3), which implies solutions of the form (5.4) for /3S+ 0, may be 

solved by iteration. We consider here the first iteration about the nth baro- 
tropic mode, for which 2 = (1 + x )  Hn, Tr = V,, and hWn may be neglected 
compared with p*K. Approximating j3 by 1 and appending the subscripts j 
and n in (6.4), we obtain 

where (6.6u, b) 

t The vertical-acceleration term hW could have been retained in ( 5 . l b ) ,  thereby leaving 
only the Coriolis-acceleration terms ,u* V and ,u* W as perturbation forcing functions; 
however, this offers no advantage if NZ + he and would have led to more complicated F9(z). 
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Invoking ( 5 . 8 b )  for j  = 0 and multiplying (5 .5 )  through by 1 + x ,  integrating over 
( -  1,0), and invoking (5 .98 )  and (5.11) fo r j  > 0 yields 

d 0 -  --a 0 - 2 ,  - 1 dj = a713Yj = -(Gj) (6 .7a ,  b )  

within O(F). Substituting (6 .5 )  and (6 .7 )  into (6 .3 )  and approximating P by P, 
fo r j  > 0 (but not fo r j  = 0; see below) yields 

(j > 0) 

L{@o, $ & g o ;  aoP) = - $Pn3hp*{O, Hn, V,} ( 6 . 8 ~ )  

and L{@j, $:, gj; ajpn} = ~ ~ P n ~ h ~ * { O ,  -Hn, ajV,} (j > 0). (6 .8b )  

Different techniques are expedient for the solution of (6 .8  a )  and (6.8 b ) ,  both 
because ai $ 1 for j > 0 and because {U,, V,, H,} is an eigensolution of the 
operator L in the limit aoP + P,. [The solution of either ( 6 . 8 ~ )  or ( 6 . 8 b )  could be 
obtained by eliminating @ and V and expanding B in the complete set (14; PI},  
but the expansions are not uniformly convergent near ,u = .t h and are inefficient 
for j > 0.1 Considering first ( 6 . 8 a ) ,  we eliminate 4Y0 and Yo and pose 

go=Hn+Pnd*n, a o P = P n ( I + J b n )  (6 .9a ,  b )  

to obtain { a 0 9  Y o }  = ago-QP,3h,u*(h2--2)-1{~, h}Hn (6 .10)  

and (9 + /3,) 2, = Q( aa/bp: + mh) ( A 2  - p2)-' H, - Qp* V,  - b,  H,, (6.1 1 ) 

where '32 and 2' are defined by (4 .4 )  and (4 .6 ) .  
1, exists if and 

only if the right-hand side is orthogonal to H,. Invoking this condition, inte- 
grating the term H,a,, . . . by parts, and invoking (4.4) for V,  and the normalization 
( 4 . 8 )  for H,, we obtain 

The solution of (6 .11 ) ,  subject to finiteness conditions at  ,u = 

(6 .12)  

Solving (6.11) by a modification of the method of variation of parameters, in 
which the path of integration is taken from ,u = 1 and temporarily deformed into 
the complex plane to avoid the apparent singularities at  ,u = 5 h (if h2 < 1) and 
any zeros of H, and the first term on the right-hand side is integrated by parts, 
we obtain 

which is regular at ,u = .t h and the zeros of H, and O(,u: H,) as ,u -+ .t 1.  The 
corresponding approximations to @o and $;, obtained from ( 6 . 9 a )  and (6 .10) ,  
also are regular at  ,u = i- h and O( U,) as ,u -+ 5 1.  

The asymptotic solution of (6 .8  b )  for h < 1 is complicated by the turning points 
of the operator L (and also of 9) at ,u = .t A. A uniformly valid approximation for 
h < I is developed in the following section; however, it is expedient to consider 
first the solution for either h2 < ,u2 < 1 or h > 1, which may be expanded in inverse 
powers of aiP,. The dominant terms in this expansion are given by 

{PjJ @j, 9;} N ~ . & { P * V , ,  Un,, Vn} (6 .14)  
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and 

{UW "a> = ~p*ic-pnhp*(h2--2) -1{IU,  h)H,  ( 6.15 a )  

= (p2 - h2)F1 [Pnpu,{2hp, h2 +p2) H, + (m - h-lp:) {h,p} un 
+m{pc,h}Kl, (6 .15b)  

where dB is defined by (4.4), and (6.15b) follows from (6.15a) with the aid of the 
identities implied by (4.3). Substituting (6.14) into (6. I a) ,  remarking that 

m m 

j = 1  n=o 
s djEj(Z) = 3 ( ( l + z ) E j ) q z ) - ( ( l + z ) ~ ) F o ( z )  (6.16a) 

(6.16 b )  

(6.164 

and neglecting terms of second order in r and S, we obtain 

{P, u, V )  - ~ o ( z ) { ~ o ( ~ ) 3 0 ( ~ ) ,  ~ o ( i u ) } + ~ ( ~ + ~ ) { ~ * ~ n v n ( r u ) ,  U,(p),V,(p)}. (6.17a) 

The corresponding approximation to 2, obtained by substituting (6.9) and (6.17) 
into (6.2), is 

2 = (4(4 -s-1m41K&4 +Pn6(1+zlJK(p) .  (6.17b) 

We emphasize that (6.17 a, b )  are valid only if either p2 - h2 9 ~ 3 5 1 / - ~  or h2 - I 9 S2N2 
and that they then differ from Laplace's approximation ( §  4) by O(r,p,S); more- 
over, the O(S) terms in (6.17a) then may not be significant in consequence of the 
a priori neglect of other O(6) effects. 

7. Asymptotic solution for internal waves 

temporarily drop the subscripts j and n) with 

m < K ,  

We now seek a uniformly valid solution of (6.8 b )  in 0 < p < 1 as ap 4 co (we 

h, 1 - h 9 l / K ,  K = (q3)+. (7. I a ,  b, c) 

The corresponding solution in - 1 < p < 0 follows from symmetry. 
A preliminary investigation reveals that the asymptotic determination of @ is 

somewhat simpler than that of 9. Eliminating 9 and ?br from (6.8b),  letting 
--f coand invoking (7.1), we obtain 

p*(p*+Y)"+t/3(h2-p2) GY = yartapS(h"p2) U(p) ,  ( 7 4  

where U is given by (6.15) and the primes imply differentiation with respect to  ,IL. 

The boundary conditions (which replace the finiteness conditions a t  p = 1 ) are 

GY- d S U ,  ap(p"A2) --f 00 (7.3a) 

and either %= 0 or W =  0 (,a= O), (7 .3b , c )  

according as @(p) is odd or even, respectively. The approximation is not uniform 
as p -+ 1, but this is unimportant if (7.1 a, b )  are satisfied. 
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A uniformly valid solution of (7.3) and (7.3) with a relative error O ( I / K )  [the 
relative error in (7.2), wis-ci-vis (6.8b),  is O(l/a)]  may be obtained by Langer's 
method. Invoking the transformation 

P+@(P) = d a A ( - j $ ) ' @ ( $ ) ,  p+l(p2-Ah2) U(p) = A(-+$) -$Y($) ,  (7.4a) b )  

(7.5u) 

+$$ = j"{ -+(t)>-&dt = x(p*, A,) ( A  6 p Q I) ,  (7.5b) 

where# and x are given by (4.6b) and (5.16), and letting ap + co, we transform 

17.6) 
(7.2) to 

Separating Y into Y($) -Y, and 

h 

@" - ap#@ = - apv. 

Y% = Y(O)  = (2~3)-tiim ( p 2 - ~ 2 )  u,(~) (7.7u) 

(7.7b) 

iL+h 

= ( Z A ~ ) - ~ { ~ ~ A ~ A , H , ( A )  + ( ~ A - A : )  u,(A) + ~ A % ( A ) } ,  

we obtain the general solution 

@($) = nKYn{Gi(K$) + CAi ( K $ ) }  +{'I?($) -'J?,} $-I+ O(l/@), (7.8) 

where Ai (5) = n-l (7.9a) 

and Gi ([) = 51r-l J sin ( Qt3 + Ct) dt 
0 

(7.1 Oa) 

( n W +  o(5-3) (5 -+ a) (7.10 b )  

( 7 . 1 0 ~ )  

which are plotted in figure 3, are Airy functions (Abramowitz & Stegun 1964, 
910.5) and C is a constant. The complementary solution Bi(5) is proscribed by 
(7.3a). The particular solution {Y($) -Yn}/$, which is regular a t  g5 = 0 (p = A),  is 
negligible compared with the Airy solution for K$ = O( 1) but is significant (within 
the antecedent approximations) for KC$ 9 1. Substituting (7.8) into (7.4a) and 
invoking (7.9c),  ( 7 . 1 0 ~ )  and either (7.3b) or (7.3c),  we obtain 

C = tan{(olp)BXo T in}, (7.11) 

where xo is given by (5.163) and, here and subsequently, the upperllower signs 
correspond to  oddleven @(p) and, therefore, even/odd Hn(p).  

Substituting (7.8) and (7.11) into (7.4a),  substituting the result into (6 .8b) ,  
solving for V and g, restoring the subscripts j and n and retaining only the 
dominant terms, we obtain 

{ @ j )  ';} N 4.&Sl{U%, Vn} + Y n ~ u * ' { A , ~ } r j n I  ( 7 . 1 2 ~ )  

and gj N 4'a(p*K+Ynnjn) ( a j p n  + a), (7.12b) 

(n[)-l+n-4( -5)-tcos{$( -<)"+t.n}+O([-f) (<-+ -a), 
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FIGURE 3. The Airy functions Ai and Gi; see (7.9) and (7.10). 

where 

r($) = r K (  -p$)a {Gi ( K $ )  - ( r K $ ) - ' +  Cj,Ai ( K $ ) }  (7.13a) 

- r%qpPsec w , a x o  F tr)%: {(.P)* (xo -X ,> (4 + - 001, (7.136) 

n($) = - ~ T K - ' (  -bq5)-&{Gif(q5) +cj,&'(Kq5)} (7.14a) 

9 n'B(@#)tseC{(ap)aXo T @}::: {(ap)g ( X O - X ) }  (K$ +- a), (7.14b) 

K ,  $, C, xo andx are given by (7 . lc ) ,  ( 7 4 ,  (7.11) and (5.16), and the subscriptsj 
and n imply a = ai and /3 = /3,. The terms {U,, V,} and p*V, in (7.12a, b )  corre- 
spond to (6.14) and represent the solution in ai,8,(p2-h2) 9 1. The remaining 
terms represent internal waves in p 2  < h2 that are excited by the basic solution, 
which is represented by Y,. Substituting the latter terms into (6.1 a), calculating 
the corresponding result for 2 with the aid of (5.1 1) and (6.2) and appending the 
subscript n and the superscript i (for internal wave), we obtain 

{Pt', Z:'} = 6Yn 3 d'.{4(~), C X ~ G ~ ( Z ) }  IIi,($) 
m 

( 7 . 1 5 ~ )  
j = 1  

m 

and 
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for the internal waves excited by the nth normal mode of (4.3). Adding the 
solutions of (6.17) and (7.15) yields the first-order perturbation solution of (2.6) 
and (2.9) with an error that is second order in I? and p,S, uniformly with respect 

The eigensolutions of (4.3) for p + 00 may be obtained by setting 01 = 1 and 
d= 0 in (6.8b) and repeating the preceding analysis. The endresults, normalized 
according to (4.8), are given by (cf. Hughes 1964) 

H - - /3-%-(xo/-ir)-9 ( -/$)-$ Ai’(&), ( 7 . 1 6 ~ )  

(7.16 b )  

and P - { ( I -  i)@%!o)2 = Pi, ( 7 . 1 6 ~ )  

where 1 is the number of zeros of H in lpl < h ( H  has no zeros in h < lpl < 1). 
Invoking ( 7 . 9 ~ )  and replacing I by n yields (5.17). The corresponding resonances 
for (7.15) are given by ajpn = pl, where E is any large positive integer. 

The internal-wave displacement and current given by (7.15 a )  and (7.15 b )  
typically would be somewhat less and much smaller, respectively, than their 
basic counterparts (roughly 60 yo and + % ifs  = 0.002 and /3 = 20) were it not for 
the possibility of resonance. A suitable global measure for a particular mode is the 
ratio of the baroclinic and barotropio potential energies, which is given by 
[cf. left-hand side of (3.17)] 

to p. 

(p*/h) u (p*/p) J7 - P i V X O / +  ( -fi$? Ai (P”) 

(7.17) 

within O(r ,S) .  Invoking (4.8), (7.15a), dj = -(Gj) from (6.7b), the ortho- 
normalityofthe Gj, (5.13c), andthe asymptoticapproximation (7.14b), we obtain 

€2) = ~(sY,)zx,,P;+ 01: (~,)2sec2{(01~p,) xo T in}, (7.18) 

which would be of the order of ,8, S/(.r/-> (roughly 1 0-3) in the absence of resonance. 
The analysis is not uniformly valid in the spectral neighbourhood of a strong 
resonance, where it must be modified to allow for either the contribution of the 
resonant mode to the right-hand side of (7.3) or dissipation (one of my students, 
&lr Craig Nelson, is carrying out the former modification). The model of a global 
ocean of uniform depth is too simplified, and our knowledge of stratification 
in the real oceans is too limited, to say more. 

ni 

j=1 

8. Conclusions 
Laplace’s approximation, which implies the reduction of (2.6) and (2.9) to (4.2) 

and (4.3), provides a uniformly valid approximation to the barotropic (surface- 
wave) tidal modes for a global ocean with a relative error of O ( r ,  S, ,m). It does not 
describe the baroclinic (internal-wave) tidal modes, which are a consequence of 
buoyancy and may dominate the vertical displacement below the free surface. 

The barotropic and baroclinic modes are essentially independent if h > 1, but 
are coupled by thep* component of the Coriolis acceleration (i.e. that component 

I7 F L M  66 
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associated with the horizontal component of the Earth’s rotation) if h < 1.  The 
simplest model that provides a uniformly valid description in the parametric 
domain of the real oceans (I?, 6, .m < 1 and h < 1 < N) retains the buoyancy term 
in the basic equations and poses the p* component of the Coriolis acceleration as 
a perturbation coupling term; it neglects compressibility and the non-buoyant 
effects of stratification (the Boussinesq approximation), the radial variation of 
both gravity and the metrical coefficients, and ellipticity, thereby incurring 
relative errors that are uniformly O( F, S, m), respectively. The resulting reduction 
of (2.6) yields 

sZ+P,=f3,*V (8.1) 

-P 
- P  (8.2) 

qlP* 4% 
and 

in place of (4.1) and (4.3). The boundary conditions are given by (2.9). 
The barotropic solutions of (&I), (8.2) and (2.9) are given within O(pS) by 

(8.3a, b )  

and { U ,  V }  = %P, (8.4) 

where the set {Hn; Pn} is determined by (4.5), together with finiteness conditions 
at ,u = f 1, and the operator % is defined by (4.4). The corresponding baroclinic 
solutions are given by (8.4) and 

{P,?l  = { q ( z ) ,  ajGj(z))Hn(~)7 P = Pn/ai> (8.5~4 b )  

where the sets {T;  ai} and (Gi; aj} are determined by (5.10) and (5.12), respec- 
tively, and are linearly related by (5.11). A qualitatively (quantitatively for 
j 9 1) adequate approximation for internal-wave resonance is given by (5.19). 

Any one of the modes specified by (8.3) and (8.4) may be used as the base for a 
perturbation solution of (8.1) and (8.2); however, the perturbation is significant 
within the antecedent approximations only if h < 1. The perturbation of a 
barotropic mode yields (7.15); the resulting complex amplitude of the vertical 
displacement is 

a 

z = (1 + X )  Hn(P) - s y n  Z aj<Gj> Gj(z) nj,($), (8.6) 
i=l 

where Y ,  and IT,, are given by (7 .7b)  and (7.14). The baroclinic component of 
(8.6) is typically larger than the barotropic component for z < 0 and might be 
very much larger in consequence of resonance. 

The implications of these results for tidal motion in the real oceans are limited 
by our neglect of continental boundaries and submarine topography and by the 
lack of quantitatively adequate descriptions of stratification (which may exhibit 
random variations). Moreover, the results are not valid near a strong resonance, 
and it is possible that a realistic treatment of internal tides requires a stochastic 
analysis (as in architectural acoustics). Nevertheless, the present results resolve 
earlier controversy over the ‘traditional approximation ’ and establish the 
existence of a uniformly valid approximation for N >> Q. 
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Appendix. Transformation of (2.6) 

and invoking (2.6d) and (6 . lb)  yields 
Multiplying the first two rows of (2.6a) through byjjF, integrating over ( -  1 , O )  

Multiplying (6.2) through by p^(F’-sF), integrating over ( -  1,0), invoking the 
partial integration 

0 

-1 
(p(s -1~’  - F )  P,> = p ” ( s - 1 ~  - P) P 1 - ( { (p~’ / s ) ’  - ( p ^ ~ ) ’ )  P> (A 2 a )  

= - ( p F z ) ,  + aB + ((PF)’ P), (A 2b)  

where (AZb) follows from ( A  2 a )  with the aid of (2.9a),  (5 .6) ,  (5 .5)  and (6.1 b ) ,  and 
substituting 

from (2.7), we obtain 
6’ = -p^(s+ r) (A 3) 

@(F’ - sF)  2) = (PFZ), - a 9  + r(PFP) + S(P(s-lF’ - F )  (p* V + A W ) ) .  ( A  4) 

Rewriting (2.6b) in the form (5.1 c ) ,  multiplying through by FF and invoking the 
partial integration 

In 

(PFZ,) = p^FZ 1- - ((PF)’Z) 
-1 

= ( ~ P z ) ,  - ({P(F’ - s ~ )  - rp^q z), (A 5 b )  

(A 6 )  

where ( A  5 b )  follows from ( A 5 a )  with the aid of (3.9b) and ( A  3) ,  we obtain 

(,u*@)~ + (m/p,) 9 -+ pA{(pFZ), - (p^(F’ - sF) Z) + I‘(pFP)} = 0. 

Combining (A 4) and (A 6) yields 

(,u+@)~ + (m/p*) $r+ o$AP = /~GA(P(S-~F’-F) (,u* V + AW)). (A 7 )  

Combining ( A  1) and ( A  7) yields (6.3). 
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